
DirtyCOW (CVE-2016-5195)
Aung Khant Ko

DirtyCOW (CVE-2016-5195) is a privilege escalation vulnerability in the Linux kernel. The

vulnerability has existed for over a decade, but the patch was pushed only in October 2016.

DirtyCOW is caused by a race condition vulnerability, that can be exploited to escalate user

privileges, compromising confidentiality and integrity of a system.

Introduction

DirtyCOW (CVE-2016-5195) is a race condition vulnerability reported by Phil Oester in late 2016.

The vulnerability was caused by the Linux kernel improperly handling mappings to private copy-

on-write pages. This vulnerability can be exploited to make arbitrary writes to privileged files on a

system. In this paper, we will explore some preliminary concepts such as race conditions, memory

management and copy-on-write before we study the proof-of-concept code for the DirtyCOW exploit.

Race Conditions

Race conditions are bugs in concurrent programs, such as operating systems, where multiple threads

or processes read from and write to a shared memory region. The result is non-deterministic and

depends on the order of execution (Carr et al. 1).

Race conditions are best demonstrated by examples. Examine the code for a concurrent program

in C below.

race.c

1 #include <stdio.h>

2 #include <pthread.h>

3

4 void *race(void *arg) {

5 int *x = (int *) arg;

6 for (int i = 0; i < 100000; i++) {

7 (*x)++;

8 }

9 }

10

11 int main(void) {

12 pthread t t1, t2;

13 int sharedInt = 0;

14

15 pthread create(&t1, NULL, race, (void *) &sharedInt);

16 pthread create(&t2, NULL, race, (void *) &sharedInt);

17

18 pthread join(t1, NULL);

19 pthread join(t2, NULL);

20

21 printf(‘‘%d\n’’, sharedInt);

22 return 0;

23 }

The main function creates two threads t1, t2 and initializes an integer sharedInt with the value

0. The two children threads begin execution by invoking the race function with the address of

1



sharedInt as the argument. The race function dereferences the pointer to sharedInt and incre-

ments it 100,000 times. The parent thread waits for threads t1 and t2 to finish on lines 18 and 19

and finally prints the value of sharedInt on line 20.

Compile the program using the command below.

gcc -pthread race.c -o race.out

The -pthread flag defines the macros required for using the POSIX threads (pthreads) library.

After compilation, run the race.out executable a few times.

Output of ./race.out

$ ./race.out

107264

$ ./race.out

135685

$ ./race.out

105677

$ ./race.out

131199

race.out prints seemingly random numbers each time. Logically, each thread executes the race

function and the value of x would be 200,000 when the both threads complete. This non-deterministic

behaviour is caused by the increment operation (as well as several other operations) not being

atomic.

An atomic operation is an operation that is guaranteed to be executed uninterrupted (Arpaci-

Dusseau). Single CPU instruction are always atomic. The increment operation requires three CPU

instructions - load data from memory into a register, increment the value in register and write

value to memory. Because ordering is not enforced, there is no way of knowing the actual order of

execution. One possible ordering can be seen below, where the final value of x is 1, instead of the

desired value 2.

t1 t2

load value into register

x = 0, %eax = 0

increment value in register

x = 0, %eax = 1

load value into register

x = 0, %eax = 0

increment value in register

x = 0, %eax = 1

write value from register to memory

x = 1, %eax = 1

write value from register to memory

x = 1, %eax = 1

Simple race conditions, such as the one in the example above, can be easily identified and fixed

by introducing mutual exclusion. However, most race condition vulnerabilities are far more subtle.

Detecting race conditions is an NP-hard problem, meaning there are no known efficient algorithms

for pinpointing them (Carr et al. 12).

2



The DirtyCOW exploit also follows a similar structure with two racing threads. On their own, both

threads execute non-malicious code. However, when the threads are running simultaneously, the

kernel can be tricked into performing a malicious action.

Memory Management

Memory management is an important part of operating systems. Modern operating systems ac-

complish this by virtualising memory to achieve transparency, efficiency and protection (Arpaci-

Dusseau). Each process has its own virtual address space where the stack, heap and code regions

appear contiguous. However, for reasons stated earlier, the virtual address space is broken down

into chunks (known as pages), which are then mapped into the physical address space. The mapped

pages may or may not be continuous in physical memory. In fact, unused virtual memory pages

won’t be mapped at all. The virtual address to physical address translation is done by the Memory

Management Unit (MMU), which is part of the CPU.

Copy-On-Write

Copy-On-Write (COW), also known as shadowing, is a technique for efficient sharing of resources

while preserving integrity and consistency. When a resource is accessed for read operations, the

COW system simply returns a pointer to the data. Only when a process begins writing to the file,

the system creates a private copy of the data for that process (Kasampalis 19).

The DirtyCOW exploit involves creating a copy-on-write mapping in the process’s virtual address

space to a privileged file. As long as the process is only reading from the file, the page in the

process’s virtual memory will map directly to the file on disk. When a process attempts to write to

the file, the kernel will make a private copy of the underlying file and update the mapping to point

to the new private copy.

DirtyCOW Proof of Concept

We’ll be examining the proof-of-concept code found at https://github.com/dirtycow/dirtycow.

github.io/blob/master/dirtyc0w.c. The main function takes two arguments - the path

to the privileged file, and the contents to overwrite the file with. The mmap system call creates a

mapping to the file in the process’s virtual memory. The PROT READ argument specifies that

the mapping is read-only and the MAP PRIVATE argument enables copy-on-write mapping.

MAP PRIVATE (man mmap(2)):

Create a private copy-on-write mapping. Updates to the mapping are not visible to

other processes mapping the same file, and are not carried through to the underlying

file. It is unspecified whether changes made to the file after the mmap() call are visible

in the mapped region.

creating a file-backed mapping - snippet from dirtyc0w.c

1 /* snippet */

2 f = open(argv[1], O RDONLY);

3 fstat(f, &st);

4 name = argv[1];

5 map = mmap(NULL, st.st size, PROT READ, MAP PRIVATE, f, 0);

6 /* snippet */

3

https://github.com/dirtycow/dirtycow.github.io/blob/master/dirtyc0w.c
https://github.com/dirtycow/dirtycow.github.io/blob/master/dirtyc0w.c


The first thread invokes the madviseThread function. The function loops over the madvise

system call, which is used to give advice about memory to the kernel. madvise takes three ar-

guments - the start of the address range, the length of the range in bytes and the advice. The

madviseThread function, repeatedly gives the MADV DONTNEED advice to the kernel for

the first 100 bytes of the mapped region.

MADV DONTNEED (man madvise(2)):

Do not expect access in the near future. (For the time being, the application is finished

with the given range, so the kernel can free resources associated with it.)

After a successful MADV DONTNEED operation, the semantics of memory access in

the specified region are changed: subsequent accesses of pages in the range will succeed,

but will result in either repopulating the memory contents from the up-to-date contents

of the underlying mapped file

madviseThread - snippet from dirtyc0w.c

1 void *madviseThread(void *arg)

2 {

3 char *str;

4 str=(char*)arg;

5 int i, c=0;

6 for(i=0; i<100000000; i++)

7 {

8 c+=madvise(map, 100, MADV DONTNEED);

9 }

10 printf(‘‘madvise %d\n\n’’,c);

11 }

The MADV DONTNEED advice tells the kernel that the process won’t be accessing memory

in that range anytime soon, allowing the kernel to free up related resources. For example, if the

address range is mapped to a private copy-on-write page, the kernel will simply delete that dirty

private page. If the process attempts to access the memory again, the kernel will reload the contents

from the underlying file (Chao-tic).

The second thread executes the procselfmemThread function. This function opens the pseudo-file

/proc/self/mem and repeatedly writes to the mapped memory region. The function writes to the

/proc/self/mem file because DirtyCOW relies on the kernel’s implementation of virtual memory

accesses between processes. Writing directly to the privileged file will result in a segmentation fault.

However, attempting to write to a read-only mapping in /proc/self/main will trigger the kernel’s

memory handlers which can be exploited (Chao-tic).

procselfmemThread- snippet from dirtyc0w.c

1 void *procselfmemThread(void *arg)

2 {

3 char *str;

4 str=(char*)arg;

5 int f=open(‘‘/proc/self/mem’’,O RDWR);

6 int i,c=0;

7 for(i=0;i<100000000;i++) {

8 lseek(f, (uintptr t) map, SEEK SET);

9 c += write(f,str,strlen(str));

10 }

11 printf(‘‘procselfmem %d\n\n’’, c);

12 }

4



Everything is a file on Unix based system. Different file types have different implementations for

input/output operations. The read/write implementations for /proc pseudo-files are defined in

/fs/proc/base.c of the Linux kernel source code. Whenever a process tries to write to a pseudo-

file, a call to mem write is made. The function will then execute a series of intermediary functions

before reaching vulnerable function, faultin page.

function trace starting at mem write

1 mem write (/fs/proc/base.c)

2 mem rw (/fs/proc/base.c)

3 access remote vm (/mm/memory.c)

4 access remote vm (/mm/memory.c)

5 get user pages remote (/mm/gup.c)

6 get user pages remote (/mm/gup.c)

7 get user pages locked (/mm/gup.c)

8 get user pages (/mm/gup.c)

9 faultin page (/mm/gup.c)

The vulnerable section of code can be seen below.

Vulnerable code in /mm/gup.c

1 static long get user pages (...) {

2 /* snippet */

3 do {

4 retry:

5 cond resched(); /* please rescheule me!!! */

6 page = follow page mask(vma, start, foll flags, &page mask);

7 if (!page) {

8 int ret;

9 ret = faultin page(tsk, vma, start, &foll flags, nonblocking);

10 switch (ret) {

11 case 0:

12 goto retry;

13 /* snippet */

14 }

The function follow page mask attempts to retrieve a page in memory with the given arguments.

The foll flags argument contains information about the lookup behaviour - such as how the page

is intended to be used.

Since the process is attempting to write to the page, foll flags will have the FOLL WRITE bit

set. However, the mapping is marked as read-only and the memory access permissions are being

violated. follow page mask fails to retrieve the page and returns NULL.

Instead of throwing a segmentation fault and terminating the process, the function faultin page

attempts to resolve the page fault. The handler does this by creating a private copy of the page

because the underlying file is read-only and was mapped with copy-on-write enabled. faultin page

also unsets the FOLL WRITE bit to prevent an infinite loop in get user pages (Chao-tic).

The function finally returns 0 and get user pages retries.

Under normal circumstances, the process will have its own private page that it can write to. How-

ever, the DirtyCOW exploit has a racing thread that’s deleting the copy-on-write pages. After

faultin page successfully creates a new private page, get user pages retries. If madvise with

MADV DONTNEED is executed right after faultin page completes, the newly copied private

page gets deleted and follow page mask returns NULL. The faultin page function executes for

the second time, but without the FOLL WRITE bit set. This time, the handler returns the page

5



to the actual underlying file, assuming that the process won’t write to it. The privileged file is

mapped directly into the process’s virtual memory, which the malicious process can write to. The

table below shows the order of execution resulting in a write to the privileged file.

procselfmemThread madviseThread

retrieve mapped page

follow page mask(...) returns NULL

FOLL WRITE = 1

faultin page(...) triggered

FOLL WRITE = 1

handler resolves this by creating

a private COW page

FOLL WRITE = 1

faultin page(...) unsets FOLL WRITE bit

FOLL WRITE = 0

faultin page(...) returns 0

FOLL WRITE = 0

COW page is deleted

madvise(.., MADV DONTNEED)

retrieve mapped page

follow page mask(...) returns NULL

FOLL WRITE = 0

faultin page(...) triggered

FOLL WRITE = 0

handler resolves this by returning

the underlying file

FOLL WRITE = 0

Patch

The patch was released on October 13th, 2016, authored by Linus Trovalds. The patch is rela-

tively short and can be found at https://git.kernel.org/pub/scm/linux/kernel/git/

torvalds/linux.git/commit/?id=19be0eaffa3a. Instead of removing the FOLL WRITE

bit, a new flag FOLL COW was introduced. The FOLL COW bit indicates whether a copy-on-

write has been completed for the page. This preserves the lookup behaviour and also prevents the

process from getting stuck in an infinite loop.

According to the commit message, the kernel developers were aware of the issue and Linus attempted

to fix it in August 2005. Due to problems with IBM’s S390 architecture, the fix was reverted. Rolling

back to a vulnerable state sounds horrific, but Linus stated that the race was just theoretical back

then. However, computers became faster making it possible to trigger the vulnerability.

Conclusion

The fact that the DirtyCOW vulnerability went unpatched for a decade raises several questions.

Why was it left unpatched? Are there more unpatched or undiscovered vulnerabilities in the Linux

kernel? Is the Linux kernel even secure?

As Ken Thompson once stated, it is impossible to trust code written by someone else (763). But

6

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=19be0eaffa3a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=19be0eaffa3a


the majority of the people do not have the time or the ability to write entire operating systems

from scratch or manually review and compile source code. These users have no choice but to trust

that the people delivering software are not trying to actively exploit their systems.

DirtyCOW is just one of many privilege escalation vulnerabilities in the Linux kernel. Other than

having a fancy name, there is nothing special about CVE-2016-5195. Vulnerabilities of all sorts,

ranging from denial of service to race conditions, continue to plague software. According to CVEde-

tails, in 2019, there were 170 vulnerabilities discovered in the Linux kernel, 117 in Mac OS X and

357 in Windows 10. Software is going to remain vulnerable, even those built with the best inten-

tions. Nevertheless, it is important to study vulnerabilities in order to fix and prevent them from

occuring again.

7



Works Cited

Arpaci-Dusseau, Remzi H., and Andrea C. Arpaci-Dusseau “Operating Systems: Three Easy Pieces”,

August 2003.

Carr, Steve, et al. “Race Conditions: A Case Study” The Journal of Computing in Small Colleges

17(1), September 2001.

Chao-tic “Dirty COW and why lying is bad even if you are the Linux kernel”, May 2017

Kasampalis, Sakis “Copy On Write Based File Systems Performance Analysis And Implementation”,

October 2010

Thompson, Ken “Reflections on Trusting Trust” ACM Turing Award Lectures, vol. 27, no. 8,

August 1984

Torvalds, Linus “mm: remove gup flags FOLL WRITE games from get user pages()”, October

2016, https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/

?id=19be0eaffa3a

8

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=19be0eaffa3a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=19be0eaffa3a

